Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex.

نویسندگان

  • Gang Yao
  • Xuefeng Su
  • Vy Nguyen
  • Kristina Roberts
  • Xiaogang Li
  • Ayumi Takakura
  • Markus Plomann
  • Jing Zhou
چکیده

How epithelial cells form a tubule with defined length and lumen diameter remains a fundamental question in cell and developmental biology. Loss of control of tubule lumen size in multiple organs including the kidney, liver and pancreas features polycystic kidney disease (PKD). To gain insights into autosomal dominant polycystic kidney disease, we performed yeast two-hybrid screens using the C-terminus of polycystin-1 (PC1) as bait. Here, we report that PC1 interacts with Pacsin 2, a cytoplasmic phosphoprotein that has been implicated in cytoskeletal organization, vesicle trafficking and more recently in cell intercalation during gastrulation. PC1 binds to a 107-residue fragment containing the α3 helix of the F-BAR domain of Pacsin 2 via a coiled-coil domain in its C-tail. PC1 and Pacsin 2 co-localize on the lamellipodia of migrating kidney epithelial cells. PC1 and Pacsin 2-deficient kidney epithelial cells migrate at a slower speed with reduced directional persistency. We further demonstrate that PC1, Pacsin 2 and N-Wasp are in the same protein complex, and both PC1 and Pacsin 2 are required for N-Wasp/Arp2/3-dependent actin remodeling. We propose that PC1 modulates actin cytoskeleton rearrangements and directional cell migration through the Pacsin 2/N-Wasp/Arp2/3 complex, which consequently contributes to the establishment and maintenance of the sophisticated tubular architecture. Disruption of this complex contributes to cyst formation in PKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1.

Migration of cells is critical to development of the central nervous system. Reelin, which was identified from the reeler mutant mice having a defect in the multilamellar structure of the brain, is thought to be a key signalling molecule that functions as a cue for determination of cell position. mDab1 (mouse Disabled homologue 1) functions downstream of Reelin. However, the mechanism by which ...

متن کامل

Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP.

Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A). ...

متن کامل

Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization

p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in div...

متن کامل

Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure.

Migration of cells through the reorganization of the actin cytoskeleton is essential for morphogenesis of multicellular animals. In a cell culture system, the actin-related protein (Arp) 2/3 complex functions as a nucleation core for actin polymerization when activated by the members of the WASP (Wiskott-Aldrich syndrome protein) family. However, the regulation of cell motility in vivo remains ...

متن کامل

Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization.

Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737(orpk/orpk) ) mouse, with impaired cilia assembly, exhibit a reduction in the actin s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2014